Digital Media at the University

Howard Besser, Director
Moving Image Archiving & Preservation Program
NYU's Tisch School of the Arts
http://www.tisch.nyu.edu/preservation
http://besser.tsoa.nyu.edu/Talks

Besser-Yale, 5/6/20111

Digital Media at the University

- · Recent Trends
- · Why do digital media pose long-term problems?
- · What do we need to do to answer those problems?
- Reformatting--why have we done it, and what can we learn from the audiovisual field? (and some lessons about audiovisual conservation)
- Pushing metadata gathering upstream
- · Difference btwn libraries, museums, archives
- © impediments

Besser-Yale, 5/6/20111

.

Recent trends in University Media Management

- Centralized digital repository for most of the Campus' organized collections and faculty pre-prints
 - Usually managed by Computer Center, but sometimes by Library or other units
 - Often only a storage repository (w/o preservation)
 - Sometimes has no centralized access (access is through each individual collection)
- Many handle only well-understood static formats (PDF, TIFF)
- Administrative merging of units that previously were independent
 - University Presses going to Libraries
 - Museums and Libraries into same reporting structure
 - Film Archives under libraries

esser-Yale, 5/6/20111

Strategies for Re-Use

- content: quotations, citations, photos, clips, ...
- For Re-Use with
 - Papers
 - Articles
 - Course slides
 - Social media
 - YouTube
 - Re-contextualizations

5/6/11Besser-MIAP Program, 7/14/09 Besser-Yale, 5/6/20111

The Short Life of Digital Info: Digital Longevity Problems-

- **☼**Disappearing Information
- **✿**The Viewing Problem
- ♠The Scrambling Problem
- **✿**The Inter-relation Problem
- **✿**The Custodial Problem
- **☆**The Translation Problem

sser-Yale, 5/6/20111

The Viewing Problem

- ✿Digital Info requires a whole infrastructure to view it
- **✿**Each piece of that infrastructure is changing at an incredibly rapid rate
- **\$**How can we ever hope to deal with all the permutations and combinations

Besser-Yale, 5/6/20111

The Scrambling Problem

Dangers from:

- **©**Compression to ease storage & delivery
- **☆**Container Architecture to enhance digital commerce

Besser-Yale, 5/6/2011

The Inter-relation Problem

- **☆**-Info is increasingly inter-related to other info
- +How do we make our own Info persist when it points to and integrates with Info owned by others?
- **✿**-What is the boundary of a set of information (or even of a digital object)?

Besser-Yale, 5/6/20111

0111

The Custodial Problem

- **✿**In the past, much of survival was due to redundancy
- ✿How do we decide what to save?
- **✿**Who should save it?
 - ♠ Mellon-funded E-Journal Archives
- ✿How should they save it?-

Besser-Yale, 5/6/20111

Migration

- Wordstar to Word 1 to Word 3, ...
- -Tables and complex features often get corrupted
- -Need to repeat every 4-5 years (maybe forever)
- +We know how to do this ourselves
- +If there's a problem, we can catch it soon

Besser-Yale, 5/6/2011:

10

Emulation

- Keep the Wordstar file format, but write emulators to make it work in newer environments
- +A better chance of carrying over complexity
- +Many more features can survive
- -Problems may not be caught until it's too late
- -Specialists and a whole infrastructure of emulators required
- -Serious © problems (reverse engineering?)

e, 5/6/20111

The Custodial Problem:

How to save information?

- **☆**Methods for later access
 - **☆**Refreshing
 - **✿**Migration
 - **☆**Emulation
- sues of authenticity and evidence

Besser-Yale, 5/6/20111

The Translation Problem

- **☆**Content translated into new delivery devices changes meaning
 - - A photo vs. a painting
 - --If Info is produced originally in digital form in one encoded format, will it be the same when translated into another format?
 - Behaviors

Besser-Yale, 5/6/2011:

5/20111

The Translation Problem

Thinking of the Future (1/2)

- Screens will be different resolutions and different aspect ratios
- · CRTs won't exist
- A decade or 2 from now, today's user interfaces will look like arrow-key navigation looks like today

Besser-Yale, 5/6/20111

14

The Translation Problem

Thinking of the Future (2/2)

- Today's streaming media are small windows, slow speeds
- As bandwidth increases, viewers will expect higher quality streams
- Creators may need to consider how they'll be able to deliver higher-bandwidth streams
 - Delivery Derivatives vs. Masters encoded w/standards
 - May also want to re-edit the piece to take advantage of changes in technology, viewer expectations, society-

, 5/6/20111

Screen Formats

Responding to serious Longevity Problems

- ♠ Previous formats required little ongoing intervention (remote storage facilities, Iron Mtn); digital formats require intense ongoing management
- **✿**Key requirement is **Ongoing Management**:
 - ♠Preservation Repositories
 - ♠Preservation Metadata

5/6/20111

Even newspapers in Alabama know about ongoing management The Auburn Mainsman

Managed Environment

- More than temperature & humidity control
- · Periodic monitoring of the works
- · Periodic monitoring of the technical environment for viewing the works (software, systems, hardware)
- · Trusted repositories

Standards, Metadata, & Best Practices to follow-

- · Risk Management
- Best Practices for Reformatting
- Preservation Repositories & Metadata
- Other Metadata & Standards

Risk Management

- · We can't say definitively that we can make every digital work persist
- What we CAN say is that the more a digital work conforms to standards and best practices, the greater the likelihood that $% \left\{ 1\right\} =\left\{ 1$ we can assure persistance
- · Our preservation repositories can even accept deposits of non-conforming works, but the less they conform, the less likely that they'll be salvageable
- · Persistance is most likely for works that share standards, metadata, and best practices

Reformatting Best Practices (still images)

- Think about users (and potential users), uses, and type of material/collection
 Scan at the highest quality that does not
- exceed the likely potential users/uses /material
- influence your scanning file sizes; understand the difference between digital masters and derivative files used for
- Many documents which appear to be bitonal actually are better represented with greyscale scans
- · Include color bar and ruler in the scan
- Use objective measurements to determine scanner settings (do NOT attempt to make the image good on your particular monitor or use image processing to color correct)
- Don't use lossy compression
- Store in a common (standardized) file format
- Capture as much metadata as is reasonably possible (including metadata about the scanning process itself)

Preservation Repositories: Open Archival Info System Model

Preservation Repositories: Open Archival Info System Model

- ✿ High-level reference model describing submission, organization and management, and continuing access
- ✿ Conceptual framework for different organizations to share discussions with a common language
- ✿ Producers, consumers, management, actual repository
- SIP, DIP, AIP
- ♠ AIP consists of data objects plus representation info (Content, Preservation Description, Packaging, Descriptive)
- ✿ Originally developed for Space Science community

OCLC/RLG Digital Repository Attributes

- · Administrative responsibility
- · Organizational viability
- · Financial sustainability
- · Technological suitability
- · System security
- · Procedural accountability
- · Certification-

lesser-Vale 5/6/20111

Trustworthy Repositories Audit & Certification (TRAC): Criteria and Checklist

- · Organizational Infrastructure
- Digital Object Management
- Technologies, Technical Infrastructure, & Security
- The document benefits those who work in or are responsible for digital repositories and who want to certified against its requirements, as well as for those who execute the audit and certification process However, the guidelines are also designed for a much broader audience—for organizations planning repositories and for producers of digital materials.
- · When does it come in handy?
- —For staff working within repositories: The checklist is useful in helping them to determine the criteria
 they need to plan for and to meet for safely storing and migrating digital materials.
- For producers of digital materials: It also serves producers of digital materials by helping them kn
 what to expect from the repositories they work with and how to streamline interactions with the
 repositories.
- —For those considering outsourcing their digital materials storage: The checklist will help organizations
 considering an external agency to serve their digital preservation needs to ensure that contracted
 organizations are execution the task adequately

Besser-Yale, 5/6/20111

20

Trustworthy Repositories Audit & Certification: Criteria and Checklist (TRAC)

- The repository commits to continuing maintenance of digital objects for identified community/communities.
- Demonstrates organizational fitness (including financial, staffing structure, and processes) to
- Acquires and maintains requisite contractual and legal rights and fulfills responsibilities.
- Has an effective and efficient policy framework.
- Acquires and ingests digital objects based upon stated criteria that correspond to its commitments and capabilities.
- Maintains/ensures the integrity, authenticity and usability of digital objects it holds over time.
- Creates and maintains requisite metadata about actions taken on digital objects during preservation as well as about the relevant production, access support, and usage proces contexts before preservation.
- Fulfills requisite dissemination requirements.
- Has a strategic program for preservation planning and action.
- Has technical infrastructure adequate to continuing maintenance and security of its digital objects.

er-Yale, 5/6/20111

OAIS-steps in the process

- Agreement
- Ingest
- Store and manage/maintain
 - Refresh
 - Emulate/Migrate/others
- Disseminate

e15/6/20111

Metadata

- Containers/Packaging for SIP (METS)
- AIP
- Preservation (PREMIS)

Besser-Yale \$5/6/20111

AIP Metadata

- · Preservation Description Info
 - reference info
 - context info
 - provenance info
 - fixity info
- · Packaging Info
- · Descriptive Info
- · Content Info

45/6/20111

OCLC/RLG Efforts PREMIS Data Dictionary Example

Semantic unit	fixity			
Semantic components	messageDigestAlgorithm, messageDigest, messageDigestOriginator Information used to verify whether an object has been altered in an undocumented or unauthorized way. Container			
Definition				
Data constraint				
Object category	Representation	File	Bitstream	
Applicability	Not applicable (see usage note)	Applicable	Applicable (see usage note)	
Repeatability		Repeatable	Repeatable	
Obligation		Optional	Optional	
Creation/ Maintenance notes	Automatically calculated and recorded by repository.			
Usage notes	To perform a fixity check, a message digest calculated at some earlic time is compared with a message digest calculated at a later time. If the digests are be same, the object was not altered in the interim. Recommended practice is to use two or more message digests calculated by different algorithms.			
	The act of performing a fixity check and the date it occurred would be recorded as an Event. The result of the check would be recorded a the eventOutcome. Therefore, only the messageDigestAlgorithm and messageDigest need to be recorded as objectCharacteristics for futur			

Digital Preservation Players

- Collection staff (need to reach agreement on SIP/DIP and acceptable AIP transformations)
 - preservation/conservation staff
 - metadata staff
 - access staff
- · Repository staff
- · Agreement negotiators

r-Yale] 5/6/20111

Structural & Administrative Metadata (METS)

- For complex, multi-part works (collections of images, groups of maps, albums of photographs, etc.)
- Structural--preserving relationships (books/chapters/sections /pages, photo albums on a page, master images with thumbnails and different sizes, etc.)
- Administrative—keeping information about managing the works over time (keeping track of all of the pieces in a group, what software is needed to decompress/view an image, etc.)
- Metadata Encoding & Transmission Standards (METS)--wrap the image(s) in XML encoding

15/6/20111

Website Management

More issues with referencing IDs

- · References for mirror sites
- References for back-up sites when main site is down or bottle-necked
- References for off-site copies and archival copies

esser-Yale] 5/6/20111

Migration is a form of Re-formatting. Re-formatting is not a new idea.

What is Reformatting?

- · A form of copying
- Usually copied onto a medium having different physical characteristics than the original physical strata
- Examples
 - Document on acidic paper onto non-acidic paper
 - Newspaper microfilming

esser-Yale15/6/20111

Why do we Reformat?-

ale 5/6/20111

Brittle Newspapers (Australia Battye Library)

Film Decay (LC Dayton)

Why do we Reformat?

- Because we cannot sustain the original object (its physical characteristics are deteriorating too fast)
- Because continued access and handling of the original object will rapidly decay its physical characteristics (so we create a surrogate for users and store the original in very good conditions, away from users)
- Because viewing the work requires some kind of technology, and we can't keep that technology working very far into the future
- A/V community has been forced into reformatting for a long time because of obsolescence issues-

List of old Audio Formats [Format | Description | Years in Use |

Format	Description	Years in Use
Wax Cylinder Records	2- or 4-minute formats, wax or wax compound	1888 1929
Recordable Disc Records		1929 1960s
	7", 12", or 16", recorded at	1929 1960s
(Direct or Acetate Discs)	33 or 78 revolutions per	
	minute (rpm). Generally	
	vinyl on a paper, glass or	
	metal base	
Recording Wire	Spooled wire, usually in 15-	c. 1945 1955
	to 30- minute lengths, one	
	direction only	
Open reel recording tape	1/4"- 2", 3"- 10 1/2" reels,	c. 1945- Present
	1 7/8-30 inches per second	
	(IPS) speeds	
Compact Cassette	1/8" tape in hard case, 1 7/8	1965- Present
•	IPS format	
Microcassette/Minicassette	Very small 2-4 cm cassette	1977- Present
	tapes	
Digital disk, MP3, and other		2000- Present
digital recorders	digital files to optical disks	
argital recorders	or internal hard drives	
	or mermi mid direc	
	51	1

Limitations of Reformatting

- · Authenticity issues
- User behaviors (newspaper, book, video game, ...)
- Users mistaking the reformatted work for the original

Besser-Yale 15/6/20111

Critiques of Reformatting

Mainly User Behaviors

- Can't view outside the library
- Only sequential access
- Viewing and studying is awkward
- ...

e15/6/20111

But if we don't Reformat, we totally lose some kinds of works (particularly audiovisual works like film)

- 50% of all titles produced before 1950 have vanished (approximate number as of late 1970s)
- This reflects full-length features; survival rates are much lower for other types (studio newsreels, shorts, docs, independent, ...), and these "orphans" are particularly in peril
- Fewer than 20% of features from 1920s survive in complete form; survival rates of 1910s is <10% (& none of these are negatives)

-Film Preservation 1993: A Study of the Current State of American Film Preservation, Vol 1: Report, June 1993, Report of the Librarian of Congress (http://www.loc.gov/film/study.html)

er-Yale15/6/20111

And sometimes we have to reformat because of technology changes

- We don't have video players to play tapes made 25 years ago
- We don't have 8-inch floppy disk drives, syquest drives, zip drives
- We don't have Windows 3 operating systems
- But this is something that conservators have always dealt with

Besser-Yale15/6/2011

20111

Reformatting needs to be part of a Managed Environment

- More than temperature & humidity control
- Periodic monitoring of the works
- Periodic monitoring of the technical environment for viewing the works (software, systems, hardware)
- Trusted repositories

Besser-Yale15/6/20111

5/6/20111

Storage Media

- Removable media (like CDs) is not a long-term answer
- The long-term answer requires ongoing management, and involves regular migration or emulation. This solution is only viable with storage on spinning disks-

ale, 5/6/20111

57

Storing on CDs becomes a big problem over time

Consumers replace their CDs with a hard disk (& so should you)

Preventative Conservation-

- Facilities and infrastructure
- Monitoring micro and macro environments
- Collection Assessment tools
- Treatments (chemistry, physics, reformatting)
- Disaster recovery

Besser-Yale 15/6/20111

Temperature & Humidity for Tape Storage

- Variance of less than 2°C and 5% RH per 24 hours
- · Ideally 8°C and 25% RH
- · Other options
 - 20°C (68°F) and 20-30% RH
 - 15°C (59°F) and 20-40% RH
 - 10°C (50°F) and 20-50% RH
- Never store below 8°C

amianet.org 2003, & ISO 18923

ale15/6/20111

Improving storage outside the Can

- lowering temperature and/or relative humidity can help reduce the rate of acidification in degrading film
- trying to remove acid within the can does not outweigh the benefits of low temperature and humidity
- the greatest improvements in chemical stability can be achieved with cold temperatures

sser-Yale] 5/6/20111

Monitoring Micro & Macro Environments

Improving storage inside the Can $_{\mbox{\tiny Jean-Louis Bigourdan, AMIA 1998}}$

- zeolites, silica gel, and low relative humidity preconditioning help mostly by reducing moisture content
- · acid adsorbents retard further decay
- acid adsorbents do not reduce the acid content of degraded film
- · the use of cardboard disks is not recommended

-Yale15/6/20111

NYU University Archives Internship Collection Assessment Acid Detection results/autocatalytic point readings

University Archives Collections	Total # of items	0 – 1.0	% of 0 – 1.0	1.5 - 3.0	% of 1.5 - 3.0
University Archives (in total)	400	325	81%	75	19%
Audio Visual	107	82	77%	25	23%
Brademas Papers	75	75	100%	0	0%
Classics Dept. Tapes	101	100	99%	1	1%
Dept. of Athletics	14	4	29%	10	71%
External Affairs	2	2	100%	0	0%
Abby Weed Grey	37	37	100%	0	0%
Alice V. Keliher	10	10	100%	0	0%
Miscellaneous Films	45	6	13%	39	87%
Annette Weiner	9	9	100%	0	0%

Collection Assessment Tools

 New York University Visual and Playback Inspection Ratings System (ViPIRS): Tool for Evaluating Audiovisual Magnetic Media

http://library.nyu.edu/preservation/movingimage /vipirshome.html

Columbia University Libraries: Audio/Moving Image Survey Database

https://www1.columbia.edu/sec/cu/libraries/bts /preservation/projects.html

Collection Assessment class projects

- Laurie Anderson
- Sonic Youth Video
- The Kitchen
- John F Kennedy (Gartenberg Media) Hemispheric Institute
- Cabinet Magazine Digital Content Archive
- AMNH Video Collection Robert Haller Collection (Anthology)
- New Museum of Contemporary Art Filmmakers Coop
- 16mm Films at Brooklyn Public Library
- John Watts Papers (Fales Library) Flaherty Film Seminar
- Richard Foreman Papers (Fales Library)
- Hadassah Collection
- Eyebeam
- Frank Kuenstler Films (Anthology)
- Art21 Archive World Music Institute Audio/Video
- Teo Masero Collection (NYPL-Rodgers/Hammerstein)
- Third World Newsreel

Setting Collection Priorities

- · You collection will always need more time than you can give
- · Triage--setting priorities

Physical Properties of the medium-

• chemistry, physics, electromagnetism, ...

-Yale] 5/6/20111

Signs of Vinegar Syndrome

- · sour smell
- Shrinkage
- · buckling of the emulsion
- the appearance of crystals that obscure the image

el 5/6/20111

Film--Acetate Decomposition emulsion cracks--Home Film Preservation Guide--filmforever.org Besser-Yalid 5/6/2011 87

Tape Substrate

- Early tape used cellulose acetate
 - Moisture/hydrolysis
 - Vinegar syndrome
- More recent tapes are polyester terephthalate (PET) or polyethylene napthalate (PEN)
 - Chemically stable
 - Resist hydrolysis and oxidation

le, 5/6/20111

Magnetic Particles

- Store recorded information
- Change in magnetic properties can result in loss
 - Magnetic remanence ability to retain a magnetic field
 - Coercivity ability to resist demagnetization
 - Magnetic deterioration of the metal particulate and chromium dioxide materials

Besser-Yale, 5/6/20111

Binder Layer

- Holds the magnetic particles to the base
- Where the problems are likely to occur
 - binder-base adhesion
 - oxide shedding
 - dropoff
 - hydrolysis
 - sticky shed
 - magnetic head clog
- Tape baking as one solution

,5/6/20111

Packing problems can lead to playback problems

· Tracks for helical scan can be skewed

Storing Tapes

- Tapes should be stored fully wound in one direction or the other
- Store tapes upright (like a book)
- Do not store near potential magnetic fields
- Storage cases should be opaque and kept away from source of light and humidity
- · Do not store tapes in plastic bags
- Exercise the tape every few years

Resser-Vale 5/6/20111

Temperature & Humidity for Tape Storage

- Variance of less than 2°C and 5% RH per 24 hours
- Ideally 8ºC and 25% RH
- Other options
 - 20°C (68°F) and 20-30% RH
 - 15°C (59°F) and 20-40% RH
 - 10°C (50°F) and 20-50% RH
- Never store below 8ºC

amianet.org 2003, & ISO 18923

/6/20111

NDIIPP's Preserving Digital Public Television project

ale, 5/6/20111

Pushing Metadata Gathering Upstream: The Problem

TRADITIONALLY...

- Very little metadata required for preservation accompanies an object to a repository.
- Archives, libraries and other repositories must create (or re-create) most of the necessary metadata.
- This requires many manual hours, and significant resources - both time and money.

IN THE DIGITAL WORLD..

 This doesn't scale up. Repositories will be unable to continue in this manner, as more metadata than ever is required.

20111

But much of the necessary metadata has already been gathered during production

- For each element/clip, production team usually notes source, date, place, people, and other descriptive info
- But this is treated as internal information, and often various parts of the info are distributed among the personal notebooks of different production assistants.
- There is seldom a central location for this info, and the info is seldom turned over to the archive (which later tries to recreate much of it)

Besser-Yale, 5/6/20111

5/6/20111

Similar issues w/other content types--E-Journals

- "The necessary or additional metadata cannot be effectively
 and satisfactorily produced either as an afterthought postproduction process on the publisher's side or as a pre-ingest
 conversion activity at the archive's end. Approaching earchiving in this fashion leads to distribution delays and a
 more complex production and distribution scenario, with all
 the accompanying potential to introduce production delays
 and errors"
 - Yale University, YEA: The Yale University Archive, One Year of Progress, 2002

Yale. 5/6/20111

We need to find ways to push metadata access upstream

- · Digital requires even more metadata than Analog
 - As the workflow becomes file-based, the need for robust and accurate metadata
 will become critical. File relationships, video codecs, bit rates, and rights
 information must be explicit, accurate, and immediately accessible. This will
 require a much deeper level of metadata than is currently captured in tapebased archives.
- We can't continue to supply this metadata at ingest; that won't scale
- Obtaining the necessary metadata at the end of production and broadcast life cycle is not feasible. Metadata will need to be systematically gathered during the production lifecycle and submitted with the programs to the preservation repository.

Resser-Vale 5/6/20111

6/20111

Examined Potential Points of Metadata Capture

Examined Potential Points for Metadata Capture

- Much of the necessary metadata for preservation is already generated by the production unit, but discarded after their internal use. This needs to be captured throughout the workflow.
- "Those in the production unit are the creators and have first hand knowledge of who, what, where, when, and why the content was created." -- Mary Ide and Leah Weisse, WGBH Archivists.

Besser-Yale, 5/6/20111

106

Proposed Solutions...?

- Preservation becoming a shared responsibility between content creators, distributors, curators, and preservationists.
- · Partnerships are needed to come to unified solutions.
- Preservationists seek reliable metadata back upstream in the production workflow...

ser-Yale, 5/6/20111

Libraries/Museums/Archives-

- · Original objects
- Interpretation
- Metadata
- Reformatting

Besser-Yale, 5/6/20111

/6/20111

The VirtualMuseum: The Next Generation (2004)

Museums have traditionally been much more elite than libraries

- · Highly selective
- Highly interpreted (often favoring a single interpretation)
- Driven by curators
- Not particularly concerned by access issues

5/6/20111

Macum Educational Site Leening Project

Macum Educational Site Leening Project

Search Results

Thumbnail with Brief Record

Click on an image to see a full view of that image.

Click on an image to see a full view of the Monean Paus Called the Notch of the White Monantins (Cr. October NA).

Collection NA).

Collection NA).

Creater Cole, Thomas

Title Search in the Catalith
Date: 1836-1856

Collection NA).

Creater Cole, Thomas

Title The Wayage of Life Catalithood

Date: 1846-1856

Creater Cole, Thomas

Title The Wayage of Life Catalithood

Date: 1846-1856

Creater Cole, Thomas

Title The Wayage of Life Catalithood

Date: 1846-1856

Creater Cole, Thomas

Title The Wayage of Life Catalithood

Date: 1846-1856

Creater Cole, Thomas

Title The Wayage of Life Catalithood

Date: 1846-1856

Creater NA). 1971-16-1

Date: 1846-1856

Creater NA). 1971-16-1

Date: 1846-1856

Click on an image to see a full view of that image.

Paradigms Shifts needed

	<u>Old</u>	<u>New</u>
Physical preservation	atmospheric entrl	ongoing mgmt
What to save?	artifact	idea + ancillary material & documentation
Cataloging	Individual work in hand	FRBR
Later access	Artifact & documentation	Restaging, ancillary material & documentation

Digital Media at the University

Howard Besser, NYU Moving Image Archiving & Preservation Program

- http://www.crl.edu/archiving-preservation/digital-archives/metrics -assessing-and-certifying-0
- http://www.nyu.edu/tisch/preservation
- www.ils.unc.edu/digccurr2007/papers /besserVanmalssen_paper_4-1.pdf
 • http://dlib.nyu.edu/pdptv/
- http://www.iasa-web.org/tc04/
- http://www.nfsa.afc.gov.au/screensound/screenso.nsf/
- besser.tsoa.nyu.edu/howard/Papers/vm_tng.doc
- http://besser.tsoa.nyu.edu/howard/Talks/